P. Azaria, R. M. Konik, Ph. Lecheminant, T. Palmai, G. Takacs, A. M. Tsvelik:
Particle Formation and Ordering in Strongly Correlated Fermionic Systems: Solving a Model of Quantum Chromodynamics,
arXiv:1601.02979 [hep-th].

D. X. Horvath, S. Sotiriadis, G. Takacs:
Initial states in integrable quantum field theory quenches from an integral equation hierarchy,
Nucl. Phys. B902 (2016) 508,
arXiv:1510.01735 [cond-mat.stat-mech].

Marton Kormos, Gergely Zarand:
Quantum quenches in the sine–Gordon model: a semiclassical approach,
arXiv:1507.02708 [cond-mat.stat-mech].

T. Palmai:
Edge exponents in work statistics out of equilibrium and dynamical phase transitions from scattering theory in one dimensional gapped systems,
Phys. Rev. B92 (2015) 235433,
arXiv:1506.08200 [cond-mat.stat-mech].

M. Lencses, G. Takacs:
Confinement in the q-state Potts model: an RG-TCSA study,
1509 (2015) 146,
arXiv:1506.06477 [hep-th].

R. M. Konik, T. Pálmai, G. Takács, A. M. Tsvelik:
Studying the Perturbed Wess-Zumino-Novikov-Witten SU(2)k Theory Using the Truncated Conformal Spectrum Approach,
Nucl. Phys. B899 (2015) 547,
arXiv:1505.03860 [cond-mat.str-el].

M. Mestyán, B. Pozsgay, G. Takács and M.A. Werner:
Quenching the XXZ spin chain: quench action approach versus generalized Gibbs ensemble,
J Stat. Mech. 1504 (2015) P04001,
arXiv:1412.4787 [cond-mat.stat-mech].

B. Pozsgay, I.M. Szécsényi and G. Takács:
Exact finite volume expectation values of local operators in excited states,
JHEP 1504 (2015) 023,
arXiv:1412.8436 [hep-th].

P. Dorey, G. Siviour and G. Takács:
Form factor relocalisation and interpolating renormalisation group flows from the staircase model,
JHEP 1503 (2015) 054,
arXiv:1412.8442 [hep-th].

B. Pozsgay:
Quantum quenches and generalized Gibbs ensemble in a Bethe Ansatz solvable lattice model of interacting bosons,
J. Stat. Mech. 1410 (2014) 10045,
arXiv:1407.8344 [cond-mat.stat-mech].

P. P. Mazza, M. Collura, M. Kormos, P. Calabrese
Interaction quench in a trapped one-dimensional Bose gas,
J. Stat. Mech. 1411 (2014) P11016,
arXiv:1407.1037 [cond-mat.quant-gas].

M. Kormos, L. Bucciantini, P. Calabrese
Stationary entropies after a quench from excited states in the Ising chain,
EPL 107 (2014) 40002,
arXiv:1406.5070 [cond-mat.stat-mech].

B. Pozsgay:
Failure of the generalized eigenstate thermalization hypothesis in integrable models with multiple particle species,
J. Stat. Mech. 1409 (2014) 09026,
arXiv:1406.4613 [cond-mat.stat-mech].

T. Palmai:
Excited state entanglement in one-dimensional quantum critical systems: Extensivity and the role of microscopic details,
Phys. Rev. B90 (2014) 161404(R),
arXiv:1406.3182 [hep-th].

M. Lencsés and G. Takács:
Excited state TBA and renormalized TCSA in the scaling Potts model,
JHEP 1409 (2014) 052,
arXiv:1405.3157 [hep-th].

B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G. Zaránd and G. Takács:
Correlations after quantum quenches in the XXZ spin chain: Failure of the Generalized Gibbs Ensemble,
Phys. Rev. Lett. 113 (2014) 117203,
arXiv:1405.2843 [cond-mat.stat-mech].

P. Calabrese, M. Kormos, P. Le Doussal
From the sine-Gordon field theory to the Kardar-Parisi-Zhang growth equation,
EPL 107 (2014) 10011,
arXiv:1405.2582 [cond-mat.stat-mech].

M. Mestyan, B. Pozsgay:
Short distance correlators in the XXZ spin chain for arbitrary string distributions,
J. Stat. Mech. 1409 (2014) 09020,
arXiv:1405.0232 [cond-mat.stat-mech].

T. Palmai, S. Sotiriadis:
Quench echo and work statistics in integrable quantum field theories,
Phys. Rev. E90 (2014) 052102,
arXiv:1403.7450 [cond-mat.stat-mech].

J. Wu, M. Kormos, Q. Si
Finite-Temperature Spin Dynamics in a Perturbed Quantum Critical Ising Chain with an E8 Symmetry,
Phys. Rev. Lett. 113 (2014) 247201,
arXiv:1403.7222 [cond-mat.str-el].

L. Bucciantini, M. Kormos, P. Calabrese
Quantum quenches from excited states in the Ising chain,
J. Phys. A47 (2014) 175002,
arXiv:1401.7250 [cond-mat.stat-mech].

Z. Bajnok, F. Buccheri, L. Holló, J. Konczer and G. Takács:
Finite volume form factors in the presence of integrable defects,
Nucl. Phys. B882 (2014) 501-531,
arXiv:1312.2623 [hep-th].

F. Buccheri and G. Takács:
Finite temperature one-point functions in non-diagonal integrable field theories: the sine-Gordon model,
JHEP 1403 (2014) 026,
arXiv:1312.2623 [hep-th].

S. Sotiriadis, G. Takács and G. Mussardo:
Boundary State in an Integrable Quantum Field Theory Out of Equilibrium,
Phys. Lett. B734 (2014) 52-57,
arXiv:1311.4418 [cond-mat.stat-mech].

M. Collura, M. Kormos, P. Calabrese
Stationary entanglement entropies following an interaction quench in 1D Bose gas,
J. Stat. Mech. 1401 (2014) 01009,
arXiv:1310.0846 [cond-mat.quant-gas].

B. Pozsgay:
Overlaps between eigenstates of the XXZ spin-1/2 chain and a class of simple product states,
J. Stat. Mech. 1406 (2014) 06011,
arXiv:1309.4593 [cond-mat.stat-mech].

B. Pozsgay:
The dynamical free energy and the Loschmidt echo for a class of quantum quenches in the Heisenberg spin chain,
J. Stat. Mech. 1311 (2013) 10028,
arXiv:1308.3087 [cond-mat.stat-mech].

M. Kormos, M. Collura, P. Calabrese
Analytic results for a quantum quench from free to hard-core one-dimensional bosons,
Phys. Rev. A89 (2014) 013609,
arXiv:1307.2142 [cond-mat.quant-gas].

B. Pozsgay:
Form factor approach to diagonal finite volume matrix elements in Integrable QFT,
JHEP 1307 (2013) 157,
arXiv:1305.3373 [hep-th].

B. Pozsgay:
The generalized Gibbs ensemble for Heisenberg spin chains,
J. Stat. Phys. 1307 (2013) 07003,
arXiv:1304.5374 [cond-mat.stat-mech].

I.M. Szécsényi, G. Takács and G.M.T. Watts:
One-point functions in finite volume/temperature: a case study,
JHEP 1308 (2013) 094,
arXiv:1304.3275 [hep-th].

F. Buccheri, A. Trombettoni
Relative phase and Josephson dynamics between weakly coupled Richardson models,
Phys. Rev. B87 (2013) 174506,
arXiv:1303.3544 [cond-mat.mes-hall].

I.M. Szécsényi and G. Takács:
Spectral expansion for finite temperature two-point functions and clustering,
J. Stat. Mech. 1212 (2012) P12002,
arXiv:1210.0331 [hep-th].

T. Pálmai and G. Takács:
Diagonal multi-soliton matrix elements in finite volume,
Phys. Rev. D87 (2013) 045010,
arXiv:1209.6034 [hep-th].

Á. Rapp, P. Schmitteckert, G. Takács and G. Zaránd:
Asymptotic scattering and duality in the one-dimensional three-state quantum Potts model on a lattice,
New Journal of Physics 15 (2013) 013058,
arXiv:1112.5164 [cond-mat.stat-mech].